Kamis, 27 Maret 2025

Era Deepfake: Bagaimana Melindungi Identitas Digital Kita?

Era Deepfake: Bagaimana Melindungi Identitas Digital Kita?

 Era Deepfake: Bagaimana Melindungi Identitas Digital Kita?


⚠️ Fakta Mengejutkan: Survei Kominfo 2024 menunjukkan 67% warganet Indonesia pernah menemukan konten deepfake, tapi hanya 28% yang bisa mengenalinya!

Teknologi deepfake kini semakin canggih. Dengan AI, siapapun bisa membuat video atau suara palsu yang terlihat nyata hanya dalam hitungan menit. Baru-baru ini, kasus penipuan video deepfake seorang direktur perusahaan di Jakarta yang merugikan Rp 2,3 miliar menjadi bukti betapa berbahayanya teknologi ini.

Artikel ini akan membahas:

  • Apa itu deepfake dan bagaimana cara kerjanya?
  • Dampak deepfake di Indonesia (beserta studi kasus)
  • 7 Tools untuk mendeteksi konten deepfake
  • Langkah hukum perlindungan identitas digital
  • Tips praktis melindungi diri Anda

1. Deepfake 2024: Lebih Canggih dari yang Anda Bayangkan

Deepfake kini tidak hanya bisa membuat wajah palsu, tapi juga:

  • Suara: Meniru suara seseorang hanya dengan sampel 3 detik (contoh: teknologi VALL-E Microsoft)
  • Gerakan tubuh: Membuat gerakan natural dari foto diam (tools seperti DeepMotion)
  • Latar belakang: Mengganti setting lokasi secara realistis (contoh: NeRF AI)

Kasus Deepfake di Indonesia:

  • Penipuan Virtual Meeting (2023): Karyawan mengirim uang ke "atasan" yang ternyata deepfake
  • Hoax Politik (2024): Video pidato palsu seorang tokoh nasional viral di WhatsApp
  • Revenge Porn (2024): Wajah selebgram dipalsukan dalam konten dewasa

2. 7 Tools Deteksi Deepfake yang Harus Anda Tahu

Microsoft Video Authenticator
Analisis detak jantung dan pencahayaan wajah

Deepware Scanner
Deteksi manipulasi frame per frame (gratis)

Sensity AI
Khusus deteksi deepfake wajah

WeVerify
Plugin browser untuk cek konten mencurigakan

3. Perlindungan Hukum di Indonesia

Landasan hukum untuk korban deepfake:

  • UU ITE Pasal 27(3): Pencemaran nama baik
  • UU PDP No.27/2022: Perlindungan data pribadi
  • KUHP Pasal 310: Tentang pencemaran dan penghinaan

"Korban deepfake bisa melapor ke BSSN (Badan Siber dan Sandi Negara) atau unit cybercrime Polri. Simpan semua bukti termasuk metadata file."
- Dr. Anita Rahayu, Pakar Hukum Siber UI

4. 5 Langkah Praktis Melindungi Diri

1.     Watermark foto profil: Gunakan tanda air unik di media sosial

2.     Batas berbagi data: Hindari upload video/vokal panjang di publik

3.     Verifikasi ganda: Selalu konfirmasi via chat/call sebelum bertindak atas permintaan video

4.     Google Alert: Pasang notifikasi saat nama/foto Anda muncul di web

5.     Pelajari tanda deepfake: Mata tidak berkedip, suara tidak sinkron, bayangan aneh

5. Masa Depan Deepfake: Ancaman atau Peluang?

Di balik risiko, deepfake juga punya potensi positif:

  • Industri film: Digitalisasi aktor/aktris tanpa syuting ulang
  • Pendidikan: Replika digital tokoh sejarah untuk pembelajaran
  • Kesehatan: Terapi pasien trauma dengan lingkungan virtual

FAQ

Bagaimana cara melaporkan akun yang menyebarkan deepfake saya?

Langkahnya: (1) Screenshot bukti, (2) Simpan file asli sebagai pembanding, (3) Laporkan ke platform media sosial via fitur report, (4) Buat laporan resmi ke polisi jika sudah merugikan.

Apakah ada deepfake detector buatan Indonesia?

Ya! Riset ITB mengembangkan DeepfakeID yang khusus mendeteksi karakteristik wajah Asia. Juga ada tool BSSN Deepfake Analyzer untuk kebutuhan forensik.

Kesimpulan

Deepfake ibarat pisau bermata dua. Tantangannya nyata, tapi dengan:

  • Kewaspadaan digital
  • Pemahaman teknologi
  • Dukungan regulasi

Kita bisa meminimalisir risikonya. Jadilah pengguna internet yang cerdas!

Optimasi SEO

Keyword utama: deepfake Indonesia, cara deteksi deepfake, perlindungan identitas digital, bahaya AI deepfake, kasus deepfake 2024

Penulis : Ar


Rabu, 26 Maret 2025

AI di 2024: Ancaman atau Mitra Kerja Manusia? Analisis Dampak ChatGPT hingga Industri Kreatif Indonesia

AI di 2024: Ancaman atau Mitra Kerja Manusia? Analisis Dampak ChatGPT hingga Industri Kreatif Indonesia

AI di 2024: Ancaman atau Mitra Kerja Manusia? Analisis Dampak ChatGPT hingga Industri Kreatif Indonesia

Di tahun 2024, kecerdasan buatan (AI) seperti ChatGPTMidJourney, dan Gemini telah mengubah cara kerja manusia. Di Indonesia, laporan BPS menyebut 23% perusahaan mulai mengadopsi AI untuk efisiensi. Namun, banyak yang khawatir: "Apakah AI akan menggantikan peran manusia di dunia kerja?"

Artikel ini akan membedah:

  • Perkembangan terkini AI di Indonesia dan global
  • Peluang kolaborasi manusia-AI di industri kreatif
  • Langkah antisipasi agar tidak tergantikan oleh mesin

1. Revolusi AI 2024: Apa yang Berbeda?

AI kini bukan sekadar alat, tapi "rekan kerja" yang mampu:

  • Membuat konten teks, gambar, video (contoh: ChatGPT, DALL-E)
  • Menganalisis data pasar dalam hitungan detik (tools seperti Microsoft Copilot)
  • Menjawab pertanyaan pelanggan 24/7 via chatbot (contoh: Tiket.com)

Fakta di Indonesia:

  • Startup seperti Sirclo dan eFishery menggunakan AI untuk optimasi supply chain
  • Kreator konten TikTok mengaku produktivitas naik 40% berkat AI editing tools

2. Ancaman vs Peluang: Siapa yang Paling Terdampak?

a. Pekerjaan yang Rentan Tergantikan

  • Administrasi: Otomasi input data, pembuatan laporan
  • Customer Service: Chatbot AI yang mampu handle 80% pertanyaan dasar

b. Pekerjaan yang Justru Makin Dibutuhkan

  • AI Trainer: Pakar yang "melatih" AI memahami konteks lokal (misal: logat bahasa Indonesia)
  • Kreator Konten: AI jadi alat bantu ide, tetapi storytelling manusia tetap unggul
  • Analis Data: AI menghasilkan data, tapi interpretasi tetap butuh manusia

Contoh Kolaborasi Sukses:

  • Gojek: Driver terbantu AI dalam prediksi rute tercepat
  • Tokopedia: Rekomendasi produk personalisasi AI meningkatkan konversi penjualan

3. Bagaimana Agar Tidak Tergantikan oleh AI?

"AI tidak akan menggantikan manusia, tapi manusia yang menggunakan AI akan menggantikan yang tidak."
- Dr. Andi Wijaya, Pakar Teknologi UI

Langkah konkret untuk bertahan:

1.     Upskill: Kuasai tools AI (contoh: Canva AICapCut)

2.     Fokus pada Soft Skill: Kreativitas, empati, negosiasi — area di mana AI lemah

3.     Kolaborasi: Gunakan AI untuk tugas repetitif, fokus pada strategi dan inovasi

4. Kisah Inspiratif: AI di Tangan Kreator Indonesia

Nadia, content writer di Bandung:

"Saya pakai ChatGPT untuk riset topik, tapi tetap menulis dengan gaya bahasa saya. Traffic blog naik 70%!"

Rizal, ilustrator di Yogyakarta:

"MidJourney bantu saya buat draft, tapi sentuhan akhir tetap manual. Klien puas, proses lebih cepat!"

5. Masa Depan AI di Indonesia: Prediksi 2025-2030

  • Pemerintah: Rencana regulasi etika AI (draf Perpres AI sedang disusun)
  • Pendidikan: Kampus seperti ITB dan UGM mulai buka mata kuliah spesialis AI
  • Startup: Proyeksi investasi AI di Indonesia capai $3.5 miliar pada 2025 (sumber: DSInnovate)

Kesimpulan

AI di 2024 bukanlah ancaman jika kita mampu beradaptasi. Kuncinya adalah:

1.     Jadikan AI sebagai tools, bukan kompetitor

2.     Asah kemampuan yang tidak bisa direplikasi mesin

3.     Manfaatkan untuk membuka pasar/peluang baru

FAQ (Pertanyaan Umum)

Apakah AI benar-benar akan menggantikan pekerjaan di Indonesia?

Menurut World Economic Forum, AI akan menghilangkan 85 juta pekerjaan global pada 2025, tapi menciptakan 97 juta pekerjaan baru. Fokus pada bidang yang membutuhkan "sentuhan manusia".

Tools AI apa yang populer di Indonesia?

ChatGPT, Canva AI, Jasper (untuk copywriting), dan Adobe Firefly (desain).

Optimasi SEO

Keyword:

  • Primer: AI di 2024, ChatGPT Indonesia, Ancaman AI
  • Sekunder: cara kerja dengan AI, peluang kerja AI, regulasi AI Indonesia

Terima Kasih 

Sabtu, 19 Agustus 2023

Era Industri 4.0: Mengarungi Gelombang Transformasi Digital

Era Industri 4.0: Mengarungi Gelombang Transformasi Digital

Santri Semesta - Dalam beberapa dekade terakhir, dunia telah menyaksikan perubahan besar dalam cara kita bekerja, berinteraksi, dan menjalani kehidupan sehari-hari. Ini adalah era Industri 4.0, sebuah revolusi teknologi yang mengubah lanskap bisnis, industri, dan masyarakat secara keseluruhan.

 

Industri 4.0 merujuk pada era baru dalam evolusi industri, yang dikenal sebagai revolusi industri yang didukung oleh teknologi digital. Ini melibatkan konsep interkoneksi digital yang meluas antara manusia, mesin, dan sistem, membawa inovasi dan produktivitas ke tingkat yang belum pernah terjadi sebelumnya.

 

Salah satu aspek paling mencolok dari Industri 4.0 adalah Internet of Things (IoT), di mana berbagai perangkat terhubung secara online dan berbagi data dalam waktu nyata. Dari mobil otonom yang dapat berkomunikasi dengan jaringan lalu lintas hingga pabrik yang dikelola secara otomatis dengan sistem monitoring jarak jauh, IoT telah merevolusi cara kita mengontrol dan mengelola dunia di sekitar kita.

 

Kemudian, ada juga Big Data dan Analitik, yang memungkinkan perusahaan untuk mengumpulkan, menyimpan, dan menganalisis data besar untuk mengambil keputusan yang lebih baik. Dengan algoritma yang semakin cerdas, kita dapat memahami tren pasar, perilaku pelanggan, dan pola yang sebelumnya tidak terdeteksi.

 PENERAPAN LOGIKA FUZZY METODE SUGENO

Teknologi cerdas seperti kecerdasan buatan (AI) dan mesin belajar juga menjadi bagian integral dari Industri 4.0. Mereka mampu memproses data secara lebih cepat dan akurat daripada manusia, memungkinkan aplikasi seperti pengenalan wajah, pemrosesan bahasa alami, dan bahkan mobil otonom.

 

Saat kita beralih ke era ini, sektor industri dan bisnis juga mengalami perubahan dramatis. Pabrik-pabrik pintar dengan otomatisasi canggih menggantikan model produksi tradisional, sementara teknologi 3D printing memungkinkan pembuatan produk yang lebih cepat dan lebih fleksibel. Manajemen rantai pasokan juga mendapat manfaat dari teknologi ini, dengan kemampuan untuk melacak dan mengelola barang dari sumber hingga konsumen.

 

Namun, perubahan ini juga menghadirkan tantangan. Kekhawatiran tentang privasi dan keamanan data meningkat seiring dengan pertumbuhan konektivitas. Perubahan dalam lanskap pekerjaan juga terjadi, dengan pergeseran tuntutan terhadap keterampilan dan pengetahuan manusia.

 

Dalam rangka menghadapi era Industri 4.0, adaptasi dan inovasi menjadi kunci. Pemerintah, perusahaan, dan individu perlu terus berinovasi, memperkuat keterampilan digital, dan beradaptasi dengan perubahan yang tak terelakkan. Dengan kesadaran dan persiapan yang tepat, era ini bisa menjadi peluang besar untuk mendorong pertumbuhan, efisiensi, dan kesejahteraan masyarakat. (AR)


#era 4.0 #industri 4.0 #revolusi industri 4.0 #revolusi 4.0 #4.0 #contoh revolusi industry #era industri 4.0 #revolusi industri 4.0 di Indonesia #industri 4.0 di Indonesia #era revolusi industri 4.0 #industri 4.0 artinya #teknologi 4.0 #revolusi industri di Indonesia #indonesia 4.0 perkembangan revolusi industri 4.0 di Indonesia #apa itu revolusi industri 4.0 dan contohnya #contoh penerapan revolusi industri 4.0 di Indonesia #industri 4.0 indonesia,140


Rabu, 30 Juni 2021

Penipuan vaksin Pfizer dan Moderna menggunakan aplikasi komputer

Penipuan vaksin Pfizer dan Moderna menggunakan aplikasi komputer


Santri Semesta - Informasi tentang vaksin masih sering terjadi di media sosial. Misalnya, hoaks terkait bahan baku yang digunakan Pfizer dan Moderna untuk memproduksi vaksin. Ia mengatakan, bahan vaksin yang digunakan kedua perusahaan tersebut bukanlah virus, melainkan aplikasi komputer.

“Informasi tentang paksin ini sangat sedikit yang diberikan kepada publik, bahkan akan dikenakan pengawasan yang sangat ketat. Kopit dikatakan disebabkan oleh infeksi turquoise sars cov2, sedangkan paksin kopit menggunakan adenovirus. Bahkan, teknologi paksin mRNA (Pfizer) Dan Moderna) bukan menggunakan virus, melainkan aplikasi komputer.” Demikian informasi yang diunggah akun Facebook Hakim Waluyo pada 20 Juni 2021.

Postingan itu juga mengklaim bahwa tidak ada vaksin berdasarkan virus SARS-CoV-2. Kemudian, vaksin berbasis adenovirus yang digunakan untuk memicu antibodi terhadap SARS-CoV-2 adalah scam / penipuan (bit.ly/3dopi7D).

Sayangnya, klaim ini tidak didasarkan pada fakta yang sulit. Apalagi sering diberitakan ada vaksin dari virus itu sendiri, yaitu Kexing. Vaksin menggunakan platform virus yang tidak aktif atau virus lengkap yang telah dibunuh. Uji klinis vaksin Xenoshine juga telah dilakukan. Tepatnya di Bandung, Jawa Barat. Menurut BPOM, rekor efikasi berdasarkan analisis sementara uji klinis Bandung adalah 65,3%.

Baca Juga : MUI mengimbau umat Islam di zona merah untuktidak sholat Idul Fitri berjamaah di masjid atau tempat terbuka

Jadi, apakah vaksin yang menerapkan metode mRNA seperti Pfizer dan Moderna benar-benar aplikasi komputer? Saat melacak, Pfizer dan Moderna tidak mengandung adenovirus atau virus yang tidak aktif. Ini adalah formula genetik yang menghasilkan protein lonjakan virus. Oleh karena itu, sel dapat menggunakannya untuk membuat protein. Anda dapat mempelajari cara kerja messenger RNA (mRNA) di bit.ly/3gWUoFw.

Situs resmi pfizer.com tidak menyebutkan bahwa vaksin mereka menggunakan sistem aplikasi komputer. Vaksin Moderna dalam situs resminya juga tidak menyebutkan aplikasi komputer.

Terkait dengan pria bernama Peter McCullough di capture yang diunggah akun Facebook Hakim Waluyo, situs pencari fakta factcheck.afp.com pernah mengulasnya pada 10 April 2021. Pria tersebut merupakan ahli jantung asal Amerika Serikat. Dia pernah menyebar klaim palsu tentang vaksin Covid-19. Dalam capture itu, Peter McCullough menyebutkan bahwa vaksin telah membunuh 50 ribu warga Amerika.

Klaim itu jauh berbeda dengan data yang pernah diunggah Centers for Disease Control and Prevention (CDC) Amerika Serikat. Mengutip portal usatoday.com, per April 2021 Pusat Pengendalian dan Pencegahan Penyakit AS melaporkan 7.157 kasus Covid-19 di antara orang yang sudah mendapat vaksin lengkap. Anda dapat membacanya di bit.ly/3gY1olo.

Sabtu, 26 Juni 2021

PENERAPAN LOGIKA FUZZY METODE SUGENO

PENERAPAN LOGIKA FUZZY METODE SUGENO 
UNTUK MENENTUKAN JUMLAH PRODUKSI ROTI
BERDASARKAN DATA PERSEDIAAN DAN  
JUMLAH PERMINTAAN 

Pada era globalisasi saat ini persaingan pasar dalam dunia industri sangat kompetitif sehingga dibutuhkan kemampuan pengelola perusahaan yang profesional agar dapat memenangkan persaingan dalam pasar global. Pada bidang produksi kemampuan itu antara lain adalah kemampuan merencanakan atau menentukan jumlah produksi barang. Hal ini agar dapat memenuhi permintaan pasar dengan jumlah yang sesuai dengan memperhatikan persediaan barang sehingga bisa mendapatkan keuntungan yang maksimal.

Keuntungan yang maksimal diperoleh dari penjualan yang maksimal. Dimana penjualan yang maksimal artinya dapat memenuhi semua permintaan yang ada, apa bila jumlah produk yang di produksi oleh perusahan kurang dari permintaan maka perusahan akan kehilangan peluang untuk mendapatkan keuntungan yang maksimal. Sebaliknya apabila perusahan memproduksi produk lebih banyak dari jumlah permintaan maka perusahan akan mengalami kerugian. Oleh karena itu, perencanaan jumlah produksi dalam suatu perusahaan sangatlah penting agar dapat memenuhi permintaan pasar yang tepat dan dengan jumlah yang sesuai. Faktor-faktor yang perlu diperhatikan dalam menentukan jumlah produksi, antara lain: jumlah persediaan dan jumlah permintaan.

Logika Fuzzy merupakan ilmu yang mempelajari mengenai ketidakpastian. Logika Fuzzy juga mampu untuk memetakan suatu ruang input kedalam suatu ruang output dengan tepat. Dalam teori sistem Fuzzy dikenal suatu konsep sistem Fuzzy yang digunakan dalam proses prediksi pada umumnya terdiri atas empat tahap, yaitu fuzzifikasi (proses pengubahan bilangan tegas kedalam bentuk bilangan Fuzzy), pembentukan rule basis (basis aturan Fuzzy), sistem inferensi atau penalaran Fuzzy, defuzzifikasi (proses pengubahan bilangan Fuzzy hasil dari sistem inferensi Fuzzy ke dalam bilangan tegas). Salah satu metode dalam sistem Fuzzy yang dapat dipakai dalam memprediksi adalah metode Sugeno, metode ini hampir sama dengan metode Mamdani hanya saja output (konsekuen) bukan merupakan himpunan Fuzzy tetapi berupa konstanta atau persamaan linier. 

Dengan adanya masalah tersebut maka untuk menentukan jumlah produksi dalam memenuhi permintaan konsumen yang fluktuatif diperlukan suatu alternatif pemecahan masalah tanpa menambah fasilitas yang ada, yaitu dengan mengaplikasikan Metode Fuzzy Sugeno mengunakan tool box Matlab. Penerapan Metode Fuzzy Sugeno menggunakan tool box Matlab dalam perencanaan jumlah produksi, diharapkan perusahaan dapat mengatasi fluktuasi permintaan konsumen dengan biaya produksi yang minimal. Maka, pada penelitian ini akan diterapkan Logika Fuzzy Metode Sugeno untuk menentukan jumlah produksi barang berdasarkan data persediaan dan jumlah permintaan pada Pabrik Roti Sarinda.

 

 

2. Apa Itu Logika Fuzzy  

2.1. Logika Fuzzy

Konsep tentang logika Fuzzy diperkenalkan oleh Prof. Lotfi Astor Zadeh pada 1962. Logika Fuzzy adalah metodologi sistem kontrol pemecahan masalah, yang cocok untuk diimplementasikan pada sistem, mulai dari sistem yang sederhana, sistem kecil, embedded system, jaringan PC, multichannel atau workstation berbasis akuisisi data, dan sistem kontrol. Metodologi ini dapat diterapkan pada perangkat keras, perangkat lunak, atau kombinasi keduanya. Dalam logika klasik dinyatakan bahwa segala sesuatu bersifat biner, yang artinya adalah hanya mempunyai dua kemungkinan, “Ya atau Tidak”, “Benar atau Salah”, “Baik atau Buruk”, dan lain-lain. Oleh karena itu, semua ini dapat mempunyai nilai keanggotaan 0 atau 1. Akan tetapi, dalam logika Fuzzy kemungkinan nilai keanggotaan berada diantara 0 dan 1. Artinya,bisa saja suatu keadaan mempunyai dua nilai “Ya dan Tidak”, “Benar dan Salah”, “Baik dan Buruk” secara bersamaan, namun besar nilainya tergantung pada bobot keanggotaan yang dimilikinya.

 

2.2. Konsep Dasar Himpunan Fuzzy 

Jika 𝑋 adalah sebuah koleksi obyek-obyek yang dinotasikan dengan 𝑥, maka himpunan Fuzzy 𝐴̀ dalam

𝑋 adalah sebuah himpunan pasangan berurutan 𝐴̀ = {𝑥, 𝜇𝐴̀ |(𝑥)𝜖𝑋}. Notasi 𝜇𝐴̀ (𝑥) disebut fungsi keanggotaan atau derajat keanggotaan 𝑥 dalam 𝐴 yang memetakan X  ke ruang keanggotaan M yang terletak pada rentang    [0, 1], bila M hanya memuat dua titik 0 dan 1, maka A adalah bukan Fuzzy dan 𝜇𝐴̀ (𝑥) serupa dengan karakteristik fungsi himpunan non Fuzzy. [1]

2.3. Penalaran Fuzzy Metode Sugeno

Penalaran dengan metode Sugeno hampir sama dengan penalaran Mamdani, hanya saja output (konsekuen) sistem tidak berupa himpunan Fuzzy, melainkan berupa konstanta atau persamaan linear. Michio Sugeno mengusulkan penggunaan singleton sebagai fungsi keanggotaan dari konsekuen. Singleton adalah sebuah himpunan Fuzzy dengan fungsi keanggotaan yang pada titik tertentu mempunyai sebuah nilai dan 0 di luar titik tersebut. Ada 2 model Fuzzy metode Sugeno yaitu sebagai berikut: a. Model Fuzzy Sugeno Orde-Nol 

Secara umum bentuk model Fuzzy Sugeno Orde Nol adalah: 

IF (𝑥1 𝑖𝑠 𝐴1) ∘ (𝑥2 𝑖𝑠 𝐴2) ∘ (𝑥3 𝑖𝑠 𝐴3) ∘ … ∘ (𝑥𝑁 𝑖𝑠 𝐴𝑁) THEN 𝑧 = 𝑘 dengan A𝑖 adalah himpunan Fuzzy ke-i sebagai antesenden, dan 𝑘 adalah suatu konstanta sebagai konsekuen.

 

b.    Model Fuzzy Sugeno Orde-Satu 

Secara umum bentuk model Fuzzy Sugeno Orde-Satu adalah: 

IF (𝑥1 𝑖𝑠 𝐴1) ∘ (𝑥2 𝑖𝑠 𝐴2) ∘ (𝑥3 𝑖𝑠 𝐴3) ∘ … ∘ (𝑥𝑁 𝑖𝑠 𝐴𝑁) THEN 𝑧 = 𝑝1 ∗ 𝑥1 + ⋯ + 𝑝𝑁 ∗ 𝑥𝑁 + 𝑞 dengan A𝑖 adalah himpunan Fuzzy ke-𝑖 sebagai antesenden, dan p𝑖 adalah suatu konstanta ke-i dan 𝑞 juga merupakan konstanta dalam konsekuen. 

Berdasarkan model Fuzzy tersebut, ada tahapan-tahapan yang harus dilakukan dalam implementasi metode Sugeno yaitu sebagai berikut:

1)    Pembentukan himpunan Fuzzy  

Pada tahapan ini variabel input dari system Fuzzy ditransfer ke dalam himpunan Fuzzy untuk dapat digunakan dalam perhitungan nilai kebenaran dari premis pada setiap aturan dalam basis pengetahuan. Dengan demikian tahap ini mengambil nilai-nilai tegas dan menentukan derajat di mana nilai-nilai tersebut menjadi anggota dari setiap himpunan Fuzzy yang sesuai.

2)    Aplikasi fungsi implikasi

     Tiap-tiap aturan (proposisi) pada basis pengetahuan Fuzzy akan berhubungan dengan suatu relasi Fuzzy. Bentuk umum dari aturan yang digunakan dalam fungsi implikasi adalah sebagai berikut: IF x is A THEN y is B dengan x dan y adalah skalar, dan A dan B adalah himpunan Fuzzy. Proposisi yang mengikuti IF disebut sebagai antesenden sedangkan proposisi yang mengikuti THEN disebut konsekuen. Proposisi ini dapat diperluas dengan menggunakan operator    Fuzzy seperti,                     IF (𝑥1 is 𝐴1) ∘ (𝑥2 is 𝐴2) ∘ (𝑥3 is 𝐴3) ∘ … ∘ (𝑥𝑁 is 𝐴𝑁) THEN y is 𝐵 dengan adalah operator       (misal: OR atau AND). Secara umum fungsi implikasi yang dapat digunakan yaitu sebagai berikut:

Min (minimum) Fungsi ini akan memotong output himpunan Fuzzy. Dot (product) Fungsi ini akan menskala output himpunan Fuzzy. 

Pada metode Sugeno ini, fungsi implikasi yang digunakan adalah fungsi min.

 

c.     Defuzzifikasi ( Defuzzification ) Input dari proses defuzzifikasi adalah himpunan Fuzzy yang dihasilkan dari proses komposisi dan output adalah sebuah nilai. Untuk aturan IFTHEN Fuzzy dalam persamaan 𝑅𝑈(k) = IF x1 is 𝐴1𝑘 and… and x𝑛 is 𝐴𝑛𝑘 THEN y is 𝐵𝑘, dimana 𝐴1𝑘 dan 𝐵𝑘 berturut-turut adalah himpunan Fuzzy dalam 𝑈𝑖 𝑅 (U dan V adalah domain fisik), 𝑖 = 1, 2,… , 𝑛 dan 𝑥 = (𝑥1,𝑥2,… , 𝑥𝑛) 𝑈 dan 𝑦 𝑉 berturut-turut adalah variabel input dan output (linguistik) dari sistem Fuzzy. Defuzzifier pada persamaan di atas didefinisikan sebagai suatu pemetaan dari himpunan Fuzzy 𝐵 ke dalam 𝑉 𝑅 (yang merupakan output dari inferensi Fuzzy) ke titik tegas 𝑦 ∗ 𝑉. [2]. Pada metode Sugeno defuzzification dilakukan dengan perhitungan Weight Average (WA): 

                                                                                             


 

Keterangan:

WA= Nilai rata-rata, 𝛼𝑛 = nilai predikat aturan ke-n, dan 𝑧𝑛 = indeks nilai output (konstanta) ke-n.

 

2.4. Fungsi Keanggotaan

Fungsi keanggotaan adalah grafik yang mewakili besar dari derajat keanggotaan masing-masing variabel input yang berada dalam interval antara 0 dan 1. Derajat keanggotaan sebuah variabel x dilambangkan dengan simbol μ(x). Aturan-aturan (Rules) menggunakan nilai keanggotaan sebagai faktor bobot untuk menentukan pengaruhnya pada saat melakukan inferensi dalam menarik kesimpulan. Ada beberapa fungsi yang bisa digunakan namun dalam penelitian ini peneliti memakai fungsi keangotaan kurva bahu dan kurva segitiga.

a. Representasi Kurva Bahu

Fungsi keanggotaan yang merepresentasikan kurva bahu kiri:  



 

Fungsi keanggotaan yang merepresentasikan kurva bahu kanan: 



 

 

b. Representasi kurva segitiga 

Fungsi keanggotaan yang merepresentasikan kurva segitiga adalah



 

Keterangan :

 = nilai domain terkecil yang mempunyai derajat keanggotaan nol;

 = nilai domain yang mempunyai derajat keanggotaan satu;  = nilai domain terbesar yang mempunyai derajat keanggotaan nol;

 = nilai input atau output yang akan diubah ke dalam bilangan Fuzzy. 

Fungsi untuk memetakan kembali nilai Fuzzy menjadi nilai crisp yang menjadi output/nilai solusi permasalahan.

 

2.5. Galat Presentasi

Dalam banyak situasi peramalan, ketepatan dipandang sebagai kriteria penolakan untuk memilih suatu peramalan. Galat persentase merupakan suatu ukuran ketepatan peramalan, dalam penelitian ini peneliti memakai nilai tengah galat persen atau MPE (Mean Percentage Error) bentuk persamaannya seperti berikut. 



 

 

 

 

3. Hasil dan Pembahasan Fuzzy

3.1. Data 

Bahan penelitian yang dipakai berupa data sekunder yang hanya terdiri dari data persediaan minimal (600 bks) maksimal (900 bks), jumlah permintaan minimal (1000 bks)  maksimal (1600 bks), dan jumlah produksi minimal (1950 bks) maksimal (2600) dalam satu hari. Dengan data-data tersebut, kemudian peneliti menggunakan Microsoft Excel 2010 untuk memanggil data secara random untuk mendapatkan data persediaan, permintaan, dan produksi perhari dalam jangka waktu satu bulan, untuk bulan Januari 2016 dapat dilihat pada Tabel berikut. 

Tabel 1. Data Permintaan, Persediaan dan Produksi



 

 

3.2. Proses Perhitungan Logika Fuzzy Metode Sugeno

 

a. Pembentukan Himpunan Fuzzy (fuzzifikasi)

Pada metode Fuzzy sugeno, baik variabel input maupun output dibagi menjadi satu atau lebih himpunan Fuzzy. Dalam penentuan jumlah produksi barang berdasarkan data persediaan dan jumlah permintaan, variabel input dibagi menjadi dua yaitu variabel persediaan dan permintaan sedangkan yang menjadi variabel output adalah jumlah produksi produksi. Penentuan variabel yang digunakan dalam penelitian ini, terlihat pada Tabel 2.

Tabel 2. Semesta pembicaraan untuk semua variabel Fuzzy

Fungsi

Nama Variabel

Semesta Pembicaraan

Input

Permintaan

[1000-1600]

Persediaan

[600-900]

Output

Jumlah Produksi

[1950-2600]

 

Dari tabel di atas yang menjadi semesta pembicaraan adalah data permintaan minimal dan maksimal, persediaan minimal dan maksimal, dan produksi minimal dan maksimal dalam satu hari, sedangkan yang akan menjadi domain untuk komposisi aturan Fuzzy adalah data random yang telah dibuat pada Tabel.1 Berdasarkan data tersebut dilihat kembali nilai minimal dan maksimal dari variabel input maupun variabel output seperti terlihat pada Tabel 3.

 

 

Tabel 3.  Nilai Minimal dan Maksimal dari Variabel Input Output Pada Data Random

Fungsi

Nama Variabel

Domain

Input

Permintaan

[1030-1589]

Persediaan

[607-894]

Output

Jumlah Produksi

[1996-2579]

 

b. Pembentukan Fuzzy Rule

Pada tahap ini, nilai keanggotaan himpunan permintaan dan persediaan saat ini dicari menggunakan fungsi keanggotaan himpunan Fuzzy berdasarkan data. Pembentukan Aturan Fuzzy, Dari dua variabel input dan sebuah variabel output yang telah didefinisikan, dengan melakukan analisa data terhadap batas tiap-tiap himpunan Fuzzy pada tiap-tiap variabelnya maka terdapat 9 aturan Fuzzy yang akan dipakai dalam sistem ini, dengan susunan aturan IF permintaan IS … AND persediaan IS … THEN produksi IS  …, hasilnya dapat dilihat pada Tabel 4, yaitu:

Tabel. 4 Aturan Fuzzy

No

Variabel

 

Input

Output

Permintaan

Persediaan

Produksi

1

Kecil

Sedikit

Sedikit

2

Kecil

Sedang

Sedikit

3

Kecil

Banyak

Sedikit

4

Sedang

Sedikit

Sedikit

5

Sedang

Sedang

Sedang

6

Sedang

Banyak

Sedang

7

Besar

Sedikit

Sedikit

8

Besar

Sedang

Sedang

9

Besar

Banyak

Banyak

 

Berikut adalah cara untuk mendapatkan nilai keanggotan berdasarkan variabel linguistik dan variabel numerik yang digunakan:

-       Fungsi keanggotaan himpunan Fuzzy KECIL, SEDANG, dan BESAR dari variabel Permintaan



 



 

Gambar 1. Himpunan Fuzzy dari Variabel Permintaan

 

-       Fungsi keanggotaan himpunan Fuzzy SEDIKIT, SEDANG, dan BANYAK dari variabel Persediaan



 

    Gambar 2. Himpunan Fuzzy dari Variabel Persediaan

 

-       Fungsi keanggotaan himpunan Fuzzy SEDIKIT, SEDANG, dan BANYAK dari variabel Produksi



 



 

Gambar 3. Himpunan Fuzzy dari Variabe Produksi

3.3. Implementasi Program

Program yang dipakai dalam pembahasan ini adalah MATLAB yang bertujuan untuk membantu menghitung banyaknya produksi roti khususnya pada tahapan defuzzifikasi pada Pabrik Roti Sarinda berdasarkan data permintaan dan persediaan. 



 

Gambar 4. Penerapan masalah ke dalam Aplikasi

Pada Gambar 4 ini adalah tahap pembentukan variabel input dan output. Dapat dilihat ada dua input yang berwarna kuning yaitu permintaan dan persediaan  kemudiaan yang berwarna biru adalah output yaitu produksi. Tahap selanjutnya pembentukan himpunan Fuzzy dan fungsi keanggotaan. Pada Gambar 1 pilih input permintaan untuk dibuat fungsi keanggotaan yang lebih detail, yaitu untuk fungsi keanggotaan, KECIL, SEDANG dan BESAR range adalah [1000-1600] untuk fungsi keanggotaan KECIL tipe variabelnya adalah trapmf dengan parameternya [778 975 1030 1310], SEDANG tipe variabelnya adalah trimf dengan parameternya [1030 1310 1589] sedangkan fungsi keanggotaan BANYAK tipe variabelnya trapmf dengan parameternya [1310 1589 1695 1796] hasilnya ditampilkan pada Gambar 2.



 

Gambar 5. Fungsi Keanggotaan Variabel Input Permintaan

 



 

Gambar 6. Fungsi Keanggotaan Variabel Input Persediaan

Pada Gambar 5 di atas pula, dipilih input persediaan untuk dibuat fungsi keanggotaan yang lebih detail, yaitu untuk fungsi keanggotaan SEDIKIT, SEDANG dan BANYAK mempunyai range [600-900]. Untuk fungsi keangotaan SEDIKIT tipe variabelnya adalah trapmf dengan parameternya [492 588 607 750], untuk fungsi keangotaan SEDANG tipe variabelnya adalah trimf dengan parameternya [607 750 894] sedangkan fungsi keanggotaan BANYAK tipe variabelnya adalah trapmf dengan parameternya [750 894 912 1008] hasilnya ditampilkan pada Gambar 6.

Demikian pula untuk output produksi dari Gambar 1 di atas dipilih output produksi untuk dibuat fungsi keanggotaan lebih detail, yaitu untuk fungsi keanggotaan SEDIKIT, SEDANG dan BANYAK rangenya adalah [1950-2600]. Untuk fungsi keangotaan SEDIKIT, SEDANG dan BANYAK tipe variabelnya adalah constant dengan parameternya [1996], [2275] dan [2579].



 

Gambar 7. Fungsi Keanggotaan Variabel Output Produksi

 Dengan menyusun aturan Fuzzy seperti pada Tabel 4 ke dalam tollbox Matlab maka hasilnya adalah:



 

Gambar 8. Aturan Fuzzy berdasarkan Variabel Linguistik

Berdasarkan rule yang ada diperoleh rule view untuk simulasi hasil yang ingin diperoleh pada Gambar 9.



 

Gambar 9. Rule view (Hasil Optimasi/ Defuzzifikasi)

 Pada Gambar 6 kita bisa mengoptimasi beberapa data permintaan dan jumlah persediaan yang ada maka kita akan mengetahui berapa jumlah produk yang harus diproduksi. Misalnya kita mengoptimasi input permintaan sebanyak 1415 dan input persediaan yang ada sebanyak 625 maka jumlah produk yang harus diproduksi oleh sistem pengambilan keputusan Sugeno ini adalah 2030 produk, hasil tampilannya terlihat pada Gambar 10.



 

Gambar 10. Hasil Optimasi dengan Jumlah Permintaan 1415 dan Persediaan 622

 

Tabel 5. Jumlah Produk yang Harus di Produksi Berdasarkan Input Permintaan dan Persediaan (Fuzzy sugeno)



 

 Dari hasil penerapan Logika Fuzzy (Sugeno) pada tollbox Matlab maka didapat hasil perbandingan penilaian logika Fuzzy (Sugeno) dengan produksi Pabrik Roti Sarinda Ambon, menggunakan persentase rata-rata atau Mean Percentage Error (MPE) dapat dilihat pada Tabel dibawah ini. 

Tabel 6. Perbandingan Penerapan Logika Fuzzy Metode Sugeno



 

Tabel 7. Perhitungan MPE Metode Sugeno



 

 

Sehingga didapat hasil perhitungan  rata-rata persentase kesalahan dari Logika Fuzzy  Metode Sugeno yang digunakan adalah 13.07835 sedangkan tingkat kebenaran dari hasil perhitungan tersebut adalah 86.92165 maka dapat disimpulkan bahwa hasil dari perhitungan Logika Fuzzy Metode Sugeno yang digunakan pada sistem ini dapat digunakan untuk prediksi jumlah produksi pada Pabrik Roti Sarinda Ambon.

4. Kesimpulan

 

Berdasarkan rumusan masalah, hasil penelitian dan pembahasan mengenai penentuan jumlah produksi roti berdasarkan jumlah persediaan dan permintaan dapat diambil beberapa kesimpulan, yaitu : 

a.     Untuk menentukan jumlah produksi dapat memasukan nilai pada kolom input pada Gambar 10 sesuai dengan data yang ada atau dengan data yang lain yang masih berada pada nilai domain fungsi. 

b.    Dari hasil perbandingan, Logika Fuzzy Sugeno dapat dipakai sebagai alat peramalan dalam menentukan jumlah produksi berdasarkan jumlah permintaan dan persediaan Pabrik Roti Sarinda Ambon dengan nilai kebenaran mencapai 86.92 %.

 

 

Daftar Pustaka

 

[1]  Zimmermann, Fuzzy Set Theory and Its Application, Massachusetts: Kluwer Academic Publisher, 1991. 

[2]  L. Fauset, Fundamentals of Neural Networks, New Jersey: Prentice Hall, 1994. 

[3]  S. Kusumadewi, Membangun Jaringan Syaraf Tiruan Menggunakan Matlab dan Excel Link, Yogyakarta: Graha Ilmu, 2004. 

[4]  S. Kusumadewi, Analisis dan Desain Sistem Fuzzy Menggunakan Tool Box Matlab, Yogyakarta: Graha Ilmu, 2002.

[5]  S. Kusumadewi and H. Purnomo, Aplikasi Logika Fuzzy untuk Pendukung Keputusan, Yogyakarta: Graha Ilmu, 2004. 

[6]  M. Arhami, Konsep Dasar Sistem Pakar Jilid 1, Yogyakarta: Penerbit Andi, 2005. 

[7]  Sukandy, M. Dwi, T. Basuki and S. Puspasari, Penerapan Metode Fuzzy Mamdani untuk Memprediksi Jumlah Produksi Minyak Sawit Berdasarkan Data Persediaan dan Jumlah Permintaan (Studi Kasus PT Perkebunan Mitra Ogan Baturaja), Baturaja, 2014. 

[8]  M. Yunus and W. Atim, “Penerapan Logika Fuzzy (Mamdani) untuk Menentukan Jumlah Produksi Roti Berdasarkan Data Persediaan dan Jumlah Produksi Minyak Sawit Berdasarkan Data Persediaan dan Jumlah Permintaan (Studi Kasus: PT. Bosinda Cahaya Anugrah),” Jurnal Teknoinfo, vol. 10, no. 1, pp. 1-8, 2014.